1H qNMR Determination of Diacetylemorphine Reference Substance

ZHOU Xiao-li, ZENG Yue-lin, NAN Nan, CHEN Hua*

(National Institutes for Food and Drug Control, Beijing 102629, China)

Abstract Objective: To establish a 1H quantitative nuclear magnetic resonance (1H qNMR) method for the determination of diacetylemorphine. Methods: 1H qNMR spectra were obtained in chloroform–d by using an Avance III 600 spectrometer with noesyigld1d pulse sequence at 25 °C, the internal standard was dimethyl terephthalate (DMT), the relaxation delay time was 25 s. Results: The peaks at δ 6.76 of diacetylemorphine and δ 8.10 of DMT were used for quantitation; the precision RSD (n=5) was 0.22%, the repeatability RSD (n=5) was 0.74%. The result determined by the method (98.7%) was consistent with the result by mass balance method (98.7% by HPLC and 98.3% by GC) and DSC method (98.4%). Conclusion: The 1H qNMR method can be used for the quantitative determination of diacetylemorphine. It is indicated that 1H qNMR is effective and reliable as a good complementariness for the determination of the reference standards.

Keywords: 1H quantitative nuclear magnetic resonance (1H qNMR); diacetylemorphine; standard substance; content assay; dimethyl terephthalate (DMT)
NMR 技术的开始用于定量分析始于 1963 年 [1-2]，该方法在药物分析领域的应用越来越广泛 [3-4]。qNMR 技术的基础是采集不同浓度的样品 NMR 谱，计算样品中各组分的含量。qNMR 技术的最大优点是它只需用已知纯度的标准品作为对比样品，无需特定的对照样品，只要被测样品和标准品中至少有 1 个或 1 组有特征的且互不重叠的共振峰存在，则无需引入任何校正因子，直接根据共振峰的面积求出所代表的氢原子的数目 [5]。

乙酰吗啡，是甲基酸性盐作为合成起点得到的半合成毒品，最初其被用做吗啡毒瘾的药物，后来发现其具有比吗啡更有效的药物依赖性，即毒性强。长期吸食，注射海洛因可导致呼衰区功能异常 [7,8]，其对决策过程能力损失与认知障碍 [8]，且难以戒断 [9,10]。海洛因依赖已成为危害个人健康、家庭和谐与社会稳定的巨大难题 [11]。二乙酰吗啡（也称海洛因）在毒品检测中的应用有重要作用，本文针对乙酰吗啡建立了 1H NMR 定量方法，用于在对照品标定过程中进行辅助定值。

1 仪器与试剂

Bruker AVANCE III 600 核磁共振仪（Bruker 公司）；METTLER TOLEDO XPE-26 电子天平（METTLER TOLEDO 公司，d=0.001 mg）。

氘代氯仿（纯度 99.8%，含 0.03% 四甲基硅烷，Cambridge Isotope Laboratories, Inc.）；氘代二甲基亚砜（DMSO-d_6，纯度 99.9%，含 0.03% 四甲基硅烷，Cambridge Isotope Laboratories, Inc.）；对苯二甲酸二甲酯（DMM，纯度 100.0%，中国食品药品监督管理科学院）；马来酸（纯度 99.94%，Sigma-Aldrich）；乙酰解吗啡（纯度 98.3%，中国食品药品监督管理科学院）。

2 方法与结果

2.1 供试溶液的制备 精密称取吗啡标样 1.5 mg 及乙酰解吗啡标样 15 mg 至离心管中，再加入氘代氯仿 1 mL，磁烈摇匀后，转入核磁管中待测。

2.2 检测条件 采用 n-oxyglyd1d 脉冲序列在恒温 (25 ℃) 下获取 1H NMR 谱。采样中心（OIP）6.65 ppm，采样宽度（SW）15 ppm，弛豫延迟时间（D1）25 s，采样次数（AQ）3.64 s，增益（RG）32，采样点数（TD）64 k，采样次数（NS）32 次，校正次数（DS）4 次。

2.3 测定结果采用图谱 采集到的 1H NMR 数据用 topspin 3.5.7 软件处理，测定样品对内标 DMF 选区峰峰面积的相对比值，按内标法 [12-13] 计算含量。二乙酰吗啡样品及内标的谱图如图 1 所示，谱图解析见表 1。
2.4 精密度测定 将1份样品分别反复称定5次
考察开口盛分的精密度，以δ 6.76的单氢质量峰
和内标对苯二甲酸二苄酯的定量峰δ 8.10面积的比值
c计算RSD为0.07%。将1份样品反复测定5次，以
δ 6.76的单氢质量峰和对苯二甲酸二苄酯的定量
峰δ 8.10面积的比值计算RSD为0.22%。显示该
方法具有良好的精密度。

2.5 重复性试验 平行制备供试溶液5份，按“2.2”
项下条件进行测定，以内标法进行计算，二乙酰吗啡
的含量按

\[\frac{(A/n_f) \times M_i \times m_w}{(A/n_f) \times M_i \times m_w} \times W_i \]

计算，其中A为
被测样品定量峰的积分面积，n为被测样品定量峰
包含的质子数，M为被测样品的相对分子质量，A为
内标物质定量峰的积分面积，m为内标物质定量峰包
含的质子数，M为内标物质的相对分子质量，m为
称取的内标质量，W为内标的质量百分含量，m为
样品质量。结果见表2，RSD为0.74%，显示该方法
具有良好的重复性。

表2 含量测定结果

<table>
<thead>
<tr>
<th>样品号</th>
<th>m_1 (mg)</th>
<th>m_2 (mg)</th>
<th>A_1 (content)</th>
<th>A_2 (content)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.922</td>
<td>2.471</td>
<td>0.84477</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>14.317</td>
<td>2.288</td>
<td>0.81078</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>19.247</td>
<td>2.948</td>
<td>0.84830</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>18.114</td>
<td>1.711</td>
<td>1.37649</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>14.364</td>
<td>2.188</td>
<td>0.86495</td>
<td>1</td>
</tr>
</tbody>
</table>

2.6 信噪比 据文献[6]报道，H NMR 用于精确定量
时，信噪比（S/N）需大于300，对“2.5”项下最小称量
量为14.317 mg的样品的信噪比进行计算，结果为14.985，
满足精确定量的要求，计算定量下限为0.239 mg。

2.7 定量结果 配制5份平行供试溶液，按“2.2”
项下条件进行测定，按“2.5”项下公式计算二乙酰吗
啡的含量，测定结果见表2，含量平均值为98.7%。

2.8 与其他方法的比较 利用质量平衡法[13]计算
二乙酰吗啡的含量，公式为含量 = (100% - 干燥失重 -
炽灼残渣量) × 纯度。二乙酰吗啡样品的干燥失重
结果为0.21%，炽灼残渣结果为0.07%，高效液相色谱
纯度为98.97%，气相色谱纯度为98.58%，采用液相色
谱纯度按质量平衡法计算二乙酰吗啡的含量为
(100% - 0.21% - 0.07%) × 98.97% = 98.7%，采用气相色
谱纯度按质量平衡法计算二乙酰吗啡的含量为
(100% - 0.21% - 0.07%) × 98.58% = 98.3%。采用DSC
法[12]、[18]测定的结果为98.4%。采用核磁定量结果为
98.7%。计算不同方法定量得到的结果为RSD
为0.21%，由此可见3种定量方法得出的4个结果接近，可相互
佐证。

3 讨论

3.1 内标及溶剂的选择 内标物应具有较高的纯
度，较少的质子数，主要吸收峰与样品峰之间无干扰，
且不与样品发生反应。最初拟采用DMSO作为溶剂，
马来酸作为内标，从实验结果可知，二乙酰吗啡发生了
降解，主要生成O=单乙酰吗啡，这是因为二乙酰吗啡
在一定条件下不稳定，不易水解，脱乙酰基而生成
甲酸甲酯。从二乙酰吗啡的核磁共振谱图中可以看出，DMSO
苯环上的氢（δ 8.10）和二乙酰吗啡1位上的氢（δ 6.76）不重
叠，且内标物的峰稳定，不与样品反应，满足定量要求。因此，本
实验选择DMSO作为内标。样品二乙酰吗啡与内标
DMSO均易溶于氘代氯仿，溶剂峰干扰小；且对于
DMSO-d_6，氘代氯仿没有吸湿性，因此能保持干燥，更
能避免二乙酰吗啡的水解，利于样品的稳定，故采用
氘代氯仿为溶剂。

3.2 内标物与被测物定量峰的选择 采用NMR 技
术对物质进行定量时，待测物和内标物通常会有多个
峰。用于定量的内标峰和待测峰应选择与其他峰
完全分离，如图2所示，内标峰δ 8.10的T1为2.375 s，样品
定量峰δ 6.76的T1为2.860 s。根据文献报道，在进行
NMR试验时，为了保证积分结果的准确性，测量延
迟时间D1 不应小于T1的5倍[15]，为保证结果的
准确性，最终D1值选定为25 s，最终结果表明，该选择
可以满足测量精度的要求。

3.3 D1的选择 通过翻转恢复试验对所有的质子
共振谱线的弛豫时间T1值分别进行测量，结果如
图2所示，内标峰δ 8.10的T1为3.765 s，样品定量
峰δ 6.76的T1为2.860 s。根据文献报道，在进行
NMR试验时，为了保证积分结果的准确性，测量延
迟时间D1不应小于T1的5倍[15]，为保证结果的
准确性，最终D1值选定为25 s，最终结果表明，该选择
可以满足测量精度的要求。

3.4 结论 在标准物质的标化过程中，含量确定是
非常关键的步骤。特别是对于首批成品的标定时，
往往需要用不同原理的方法进行赋值，以保证结果
的准确性。
质量平衡法（mass balance method）又叫杂质扣除法[17-18]，即将从100%中减去与主成分结构类似杂质、水分、残留溶剂和不挥发性杂质的量。质量平衡法通常被认为具有高准确度，并且被世界卫生组织（WHO）[17-18]、欧洲药典[17]推荐为药品标准物质定值方法。质量平衡法含量测定过程较为复杂，理论上需要明确样品中的各种杂质，在日常工作中最常用的HPLC法进行纯度测定，常遇到的情况是无法完全确定样品中所有杂质，这时可能会遇到杂质的响应因子与主成分有差异，杂质在检测条件下不出峰或者待测样品的色谱峰与有关物质的色谱峰之间分离度较差等情况下，从而引一定的误差。

DSC 纯度测定是基于共熔体系熔点降低原理，主成分和杂质如能形成共熔体系，则主成分的熔点会随着杂质的摩尔百分比含量的提高逐渐降低。此方法样品用量少，操作简便，不需要对照品，不需要分离杂质，能测定物质的绝对纯度。但是也有限制，如它不适用于非共熔体系，不适用于熔融分解的物质，也不适合纯度过低的样品。

H qNMR 法的原理是化学环境不同氢原子核的共振峰面积只与所含氢原子数目有关。因为大部分有机分子都含有氢原子，因此它具有较高的普适性；它样品制备简单，由于氢原子的信号很强，检测十分快速；无需特定的对照品，信号强度强与氢原子数目相关，无需引入校正因子，特异性高，同时还可以提供化合物的结构信息，可以同时完成样品的定量和定性分析。当然，H qNMR 法也有其局限性，当化合物结构复杂，不具备 1 个或 1 组特征的且与其他峰线能完全分离的共振峰，则不适合采用此种方法进行精确度，但可以采用其他原子核的 qNMR 法进行检测。qNMR 的另一个巨大的优势是在一次实验中能给出定量信息，同时也能给出十分可靠的定性信息，可以在实验条件的优化上获得更明确的方向。比如本文在最初采用 DMSO 作溶剂，马来酸作为内标，采集数据后即可从图谱中观察到乙酸吗啡发生了降解，通过核磁信号解可以知道主要是生成了 0.6 单乙酰吗啡，进而可以得到乙酸吗啡 3 位的酯键水解和 4 位的酯键所致；说明它容易水解，酸性的内标以及吸湿性的溶剂对可能有不利的影响。利用这些信息，可以很好地知道如何有针对性地优化条件。

质量平衡法、DSC 法、H qNMR 法原理不同，可相互补充，相互佐证。本文建立了对乙酸吗啡含量的磁共振分析方法，此方法快速简便可靠。同时还采用质量平衡法及 DSC 含量测定方法测定其含量，测定结果一致。

参考文献
Pharm Sin., 2014, 49(9): 1248

(本文于 2018 年 2 月 1 日收到)